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Abstract

A momentum transfer equation previously used to describe non-elastic deformation in
crystalline solids represented by point masses at fixed lattice positions is extended to take
into account the existence of intrinsic (e.g. thermal) small amplitude vibrations of the
masses about their mean positions in a lattice. Use of the time-dependent Schroedinger
equation to describe momentum transfer and deformation is also discussed in terms of
this vibrating point-mass lattice model. The result is that a modified and identical dif-
ferential equation for momentum transfer is obtained from each approach ; some solutions
to this equation are presented. The previous particle momentum wave frequency depen-
dence on wave vector and resulting applications to non-elastic deformation are un-
changed, but these particle momentum waves can now be considered as modulating the
usual high-frequency waves associated with the elastic modes of a crystalline solid.

1. Introduction

A connection between particle waves, momentum transfer, and non-
elastic deformation in crystals has been presented in recent publications
(Fitzgerald, 1966a, b). The differential equation used in this previous work
assumes an equilibrium or undisturbed lattice which can be represented by
regularly spaced point masses at fixed positions. The assumption of point
masses is valid since linear momentum transfer between atoms is the process
in question, and the mass of an atom is heavily concentrated in a nucleus
of very small diameter compared to interatomic distances. On the other
hand, the atoms of a real crystal are not stationary even at absolute zero,
but instead vibrate with small amplitudes and high frequencies about
regularly-spaced mean positions. The existence of such quantized vibra-
tional modes for lattice atoms was, in fact, used in the original particle-wave
description of deformation in order to account for hypervelocity phenomena
and phonon fission (Fitzgerald, 1966b; Fitzgerald, 1964). It is clear that a
more realistic lattice model will be one in which the existence of small-
amplitude atomic vibrations at equilibrium is recognized at the outset.
Such a ‘vibrating lattice’ model is considered in the present work and some
of the necessary modifications and extensions of the particle-wave view of
deformation are presented. The role of the time-dependent Schroedinger
equation in momentum transfer and deformation (Fitzgerald & Tasi, 1967)
is also discussed in terms of a vibrating lattice model.
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42 EDWIN R. FITZGERALD

2. Momentum Transfer Between Vibrating Atoms in a One-dimensional
Lattice

Consider the infinitely long one-dimensional lattice of point masses, m,
and spacing d as shown in Fig. 1(a). If the masses are assumed to be
stationary in the absence of external forces, then the differential equation of
motion for a particle momentum wave in the lattice produced by an applied
force can be written in terms of a gengral nth mass as

dv,
m/a—t = Kp(vn+1 + Upoy — 21771) (21)

where v, is the velocity of the nth mass, etc. and K, is considered to be
either a momentum transfer constant or a velocity interaction constant for
the lattice as discussed in detail elsewhere (Fitzgerald, 1966b). For our
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Figure 1.—Schematic drawing of an infinite one-dimensional (row) lattice qf point
masses. (a) Stationary masses, and (b) vibrating masses with amplitude of vibrations, a,,
much Iess than lattice spacing, d.



MOMENTUM TRANSFER IN CRYSTAL LATTICES 43

purpose here it is convenient to rewrite equation (2.1) in the form of a
continuity equation for momentum transfer or flow along the lattice,
namely,

o(moy)

ot = Kp(vn——l - Un) - Kp(vn - Un-H) (22)
where now
d(mv,) represents the net time rate of change of momentum
ot of the nth lattice mass

K, (v, —v,) is the rate of momentum transfer from mass n — 1
to mass n

K, (v, — v,+1) is the rate of momentum transfer from mass » to
mass n + 1

K, is the momentum transfer constant for the lattice

According to equation (2.2) and the above remarks, we are postulating that
as a result of an applied force some type of momentum transfer process
occurs in the lattice for which the rate of momentum transfer depends on
the velocity differences between adjacent masses. The exact nature and/or
value of K, is then of great importance. Fortunately it is possible to obtain
an exact expression for K, by writing a wave solution (Fitzgerald, 1966a, b)
for v, in equations (2.1) or (2.2) of the form

v, = Bexp [—I(2nv, t — knd)] (2.3)

where k = 2w/ is the wave vector, d is the lattice spacing, B is a constant,
and the frequency v, is given by
—i2K, . ,kd
Y o SN @4
According to the particle-wave view of deformation (Fitzgerald, 1966a, b)
equation (2.4) gives the frequency of a particle (momentum) wave in a
lattice. In the limit of long wavelengths (small k) this frequency expression
must therefore reduce to that for a free particle, i.e.,
lim 22 2K, sin? kd _ B

2
ko0 T 2 47ka 2:5)

where 5ik?/4mm is the free-particle frequency. For small values of k the sine
can be replaced by its argument in equation (2.5) so that

K, = ik/2d? (2.6)
and equation (2.1) becomes

dv, ik

m‘ait _Ed——z(UmH + 0,1 —2l7n) (213)
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Here an exact expression for K, is obtained by imposition of the physical
boundary condition that at long wavelengths the variation of frequency
with wave vector for a particle wave in a lattice must be identical with that
for a free particle (Fitzgerald, 1966a, b).

Now consider a lattice in which the point masses vibrate independently
with small displacement amplitudes, a4, about mean positions a distance d
apart even in the absence of any external forces as shown schematically in
Fig. 1(b). At a given temperature the intrinsic vibration- frequency, v,, is
assumed constant and the same for all atoms in the lattice in accordance
with the Einstein model (Einstein, 1906, 1911) so that the displacement of a
general nth mass from its mean position at any time, ¢, in the undisturbed
lattice is given by

a, = agexp [—iQRav, t + 0,)] 2.7

The displacement amplitude, aq, is assumed to be so small compared to d
that no changes in the lattice spacings are noticeable. The amplitude of the
corresponding velocity oscillations, however, are not necessarily negligible
since v, may be large (of the order of 10'2 to 10'* cps). Thus if we dif-
ferentiate equation (2.7) with respect to time to obtain the vibrational
velocity of a general nth mass, the result is

v,(vibrational) = —i27v, agexp [ 2wy, t + 6,)] (2.8)
or
v (vib.) = byexp [-i(Q2mv, t + 0,)] (2.8)

where b, = —i2mv,a,. Hence the amplitude of the velocity oscillation is
2uv, times the displacement amplitude and not necessarily small for large
values of v,. For interatomic distances, d, of the order of 3 x 107® cm values
of vibrational displacement amplitude, @, up to 3 x 107! cm can be
considered negligible, but these may result in vibrational velocity amplitudes
of the order of 1800 cm/sec which cannot be neglected!

Consequently the general expression for the time rate of change of
momentum for a general ath lattice mass given in equation (2.2) must be
modified to take into account time variations of the equilibrium or self
vibrational momentum as well as the rate of momentum transfer to and
from the nth mass by adjacent masses which may result from external forces
acting on the lattices. The continuity equation for momentum transfer
through the nth mass then becomes

H08) K0y — ) — Kyl — o) — i2(0y)  29)

where the term i27v,(mv,) represents the time rate of change of momentum
as a result of vibration, and the other terms have the same significance as in

equation (2.2).
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Equation (2.9) can be rewritten

0
ot = Roy(tgsr + By — 203) — 2, o) (2.10)
As before, a wave solution for ¢, can be assumed to be of the form
v, = Bexp [-i(2mvt — knd)] (2.11)
This turns out to be a valid solution provided the frequency v is given by
—2iK, . ,kd

=1 — 2.1
v SNt + v, (2.12)
=v,+v, (2.13)

where v, is the frequency previously obtained {equation (2.4)] for a non-
vibrating lattice. In order to evaluate K, we again consider the limiting
value of v for long wavelengths (small values of the wave vector, k) and
note that
) —2iK,k?d?
limy =

k-0 wm 4

+, (2.14)

We expect that the closely spaced potential variation within the lattice will
have no influence on particles with long wavelengths (k — 0) and the
frequency expression given by equation (2.14) should be identical to that
for a non-lattice particle of the same mass moving in an external field-free
region, but with some kind of constant intrinsic or self energy U,. A non-
rigid or deformable particle, for example, could have a constant strain
energy or even be deforming in an oscillatory manner as its center of mass
moves with constant velocity, v. In any case, the general expression for the
frequency of the de Broglie wave associated with such a particle of mass m
is easily obtained from the expression for its total energy, E,

E=h=im?+ U,
where mv?/2 is the kinetic energy resulting from the translational velocity,
v. Then

hk* U,
-—+

and by setting U,/h = v, we again find from equations (2.14) and (2.15)
that,

K, = ih2d* (2.16)

The differential equation for momentum transfer in a lattice with vibrating
point masses [equation (2.10)] therefore becomes

a(mi,,)zi[ Z ]

_at sz (le-l + Uy — 2U,,) — 21TVu(m1),,) (2-17)
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with a solution
v, = B{exp—i[2n(v, + v,) t — knd]} (2.18)

where v, = (i/mmd?)sin? kd/2 and v, = constant.

It is not necessary to consider that a constant term appearing in the
expression for the total energy of a field-free particle results from deforma-
tion of the particle, of course. A rigid particle moving in a region of constant
potential will also possess a potential energy, V' = U,, although remaining
field-free in the sense that no force is exerted on it by a constant potential
(i.e., grad V' =0).

Equation (2.18) can be rewritten in the form

v, = Bexp (—i2mv, 1) .exp [-i(2mv, t — knd)] (2.19)

The first term of equation (2.19) represents a time-dependent amplitude
for the travelling particle wave which is itself described by the second term
and has a frequency v, and wave vector k. Thus at a given time, ¢=t,,
equation (2.19) describes a wave of amplitude, B, = Bexp(—i2wv,t,), and
wavelength A =27/k extending along the row lattice of Fig. 1. At some
later time, #,, this wave will not only be shifted along the lattice, but will
also have a different amplitude B, = Bexp(—i2mv,t,). For v,> v, the
amplitude variation of the travelling particle wave will occur very rapidly
compared to the period of the travelling particle (momentum) wave.
Hence if the velocity variation along the row lattice of Fig. 1(b) is observed
during some very short time interval, 4z, instead of instantaneously, then
the amplitude will oscillate through its range (—B to B) while the travelling
velocity wave moves a negligible distance along the lattice. The result is
that a kind of standing wave pattern will be observed (for the velocity)
during the interval At as depicted in Fig. 2. That is, if

v, > At > 1jv, (2.20)

the resulting velocity variation of the point masses (atoms) along an initially
vibrating row lattice will appear as in Fig. 2(a). From Fig. 2 it is clear that
during certain larger time intervals between the observational time intervals,
the standing wave pattern will move along the row lattice with a propagation
velocity, ¢,, as depicted in Fig. 2(b). Hence equation (2.19) [and equation
(2.18)] represents in this view a slowly moving, standing velocity wave in
the row lattice. The translational or shift velocity along the row lattice of
this (somewhat paradoxical) travelling standing wave is simply the propaga-
tion velocity of the particle momentum wave (c, = 2wv,/k) as previously
discussed elsewhere (Fitzgerald, 1966b). The situation represented by
equation (2.19) and Fig. 2 in which the amplitude of the propagating wave
is modulated at a frequency much greater than that of the wave is, of
course, quite the reverse of the usual amplitude modulation considered in
which », would be less than v,. We might, in fact, be tempted to rewrite
equation (2.19) in a way such that the amplitude is modulated at the lower



MOMENTUM TRANSFER IN CRYSTAL LATTICES 47

frequency (v,) but since v, is a constant independent of the wave vector &,
the expression exp [—i(27v, ¢ — knd)] does not represent a travelling wave
of frequency v, nor have any obvious physical meaning.

Instead of an infinite row lattice as depicted in Fig. 1, we next consider
vibrating atoms in a one-dimensional lattice of finite length, S = Nd, with
fixed ends as shown in Fig. 3. That is, we specify that vy(¢) = vy(t) =0 for
all #. Because of the zero velocity conditions at the ends of this lattice
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Figure 2.—Velocity v.s. distance x along the row lattice of Fig. 1(b) for a momentum
wave [compare equation (2.19) of text] observed during a very short time interval 4
(a) between 0 and £,, and (b) at a later time between ¢, and #;.

segment a standing wave solution to the differential equation for momentum
transfer [equation (2.10)] through a general nth mass of the lattice seems
appropriate,

vu(?) = [B, exp (tknd) + B, exp (—iknd)]exp (—i2mvt) (2.21)

and this does prove to be a solution. The condition that v,(0) = 0 requires
that B, = —B,, so that the solution becomes

v,(t) = 2iB; exp (—i2mvt) sin knd (2.22)
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Figure 3.—Schematic drawing of a finite one-dimensional (row) lattice of vibrating point
masses, 71, with a length S = Nd and fixed ends at 0 and N. Amplitude of vibration, aq,
is much less than the lattice spacing, d.

The condition that v,(0) =0 requires in addition that sinkNd =0 which
follows if kNd = g where g is an integer, i.e., discrete values of the wave
vector, k, are now demanded such that

k = qw|/Nd whereg=1,2,3...(N—1) (2.23)
The necessary frequency condition on v again turns out to be,
2K, . ,kd (2.24)
V= sin 5 + v, 2.12)
_ (2.25)
BCRRC (2.13)

where K, =iK, =i#/2d* as before and v, =constant. Now, however,
discrete values of k and therefore v are necessary as given by equation (2.23).
Minimum and maximum values of k are thus #/Nd and (N — 1) w/Nd ~ =/d
corresponding to respective minimum and maximum values of v,

vy(min) (for S= Nd)

= 8mS?

(for N large) (2.26)

v,(max) ~ p—
The general prevalence of mosaic structures in real crystals indicates that
finite lattice segments will generally be encountered in momentum transfer
through crystals and a typical length of the order of a few microns is to be
expected (Fitzgerald, 1966b; Hirsch, 1956). Thus characteristic values of
v, may range from 102 to 10!? cps with accumulations of these particle wave
modes near the ends of the frequency spectrum (Fitzgerald, 1966a, b).
Hence the situation previously considered, v,> v,, is one which will
generally prevail. For example, on the basis of the Einstein model (Einstein,
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(1906, 1911) chosen to represent the vibrating crystal lattice, characteristic
Einstein temperatures, 0, can be determined from experimental specific
heat-temperature data where 0 = hv,/k or v, =kfg/h=0-208 x 10!1 8,
(here k is Boltzman’s constant). Values of 8 obtained in this way are
between 100 and 400 °K for many crystalline solidsf; for aluminum
0 ~ 350 °K corresponding to a vibrational frequency of 7-3 x 10'? ¢ps.
On the other hand, the distance of closest approach, d =2-86 x 1073 ¢m,
for the aluminum lattice corresponds to a maximum particle wave frequency
of v,(max) = 825 x 10° cps. Thus the condition that v, > v, is easily met
even for the highest particle wave modes in this case. For solids with larger
interatomic spacings or heavier atoms values of v,(max) will be even lower
[compare equation (2.26)].

3. The Schroedinger Equation for a Vibrating Atom in a One-dimensional
Lattice

A close connection between the momentum transfer equation [equations
(2.2) and (2.6)] and the general time-dependent Schroedinger equation for
stationary atoms in a row lattice has been demonstrated previously
(Fitzgerald & Tasi, 1967). To show this it is only necessary to express the
second derivative in terms of a second difference quotient and substitute
the linear momentum, muv,, for the wave property i, to be associated with
a general nth mass (atom) of the lattice. That is, the time-dependent
Schroedinger equation for one of the masses, m, of the row lattice with
stationary equilibrium positions shown in Fig. 1(a) is,

P, 2m 21m Oty
FRCl) Vi, -+ i =0 3.1

If 4 is a continuous function of x then the second differential operator has
its common meaning that

y lim 4
ax2 - Ax-50 Ax? Aan Ax

since ¢ is defined everywhere in the interval Ax. However if ¢ is a real-
property of the type that can be defined in the vicinity of the mass point in
a lattice but not elsewhere, then a different meaning must be attached to the
second derivative operator. Following Liebnitz (Fitzgerald & Tasi, 1967)
the second derivative of the function i is therefore taken to be a second
difference quotient such that

0? 0%, 1
= s+ — 26 62)

where 1, = (x,), etc., and d is the fixed lattice spacing shown in Fig. 1(a).

1 A value of 0 > 1300°K is used to fit the experimental specific heat-temperature
variation for diamond (C).

4
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Then if the property i, to be associated with the motion of the nth mass is
taken to be a real-property, and in particular the linear momentum,
i, = mv,, we have from equations (3.1) and (3.2),

1 2m 2im
aTz(‘[’n%—l "|‘l/’n_1 _2¢n)_—ﬁ?Vn¢"+TW =0

rearranging and substituting i, = mv,,

omv, ih i
(at ) = _d_z (Un+1 + Uy — 2Un) - ﬁ Vn mv, (33)

Equation (3.3) above can be considered as an alternative form of the
Schroedinger equation for a single (but completely general) atom of a row
lattice. Stationary point masses (atoms) in such a lattice are assumed to be
in equilibrium at the lattice points as a result of the existence of a periodic
potential energy V(x) = V(x + d) as shown in Fig. 4(a). The absolute value
of such a potential is arbitrary and is selected in this figure to be zero at the
lattice points, n — 2, n — 1, n,n+ 1, n + 2, etc. Then

.. Vn—2= Vn—l == V,,: Vn+1 = Vn+2"':0
where ¥, = V(x,), etc. Equation (3.3) therefore reduces to

o(mv, ik
) (ver + et — 20) (3.4

for fixed or stationary atoms in a row lattice. This is identical to the momen-
tum transfer equation [equation (2.1a)] obtained in Section 2 on the basis
of linear momentum conservation between adjacent masses in the lattice.

If the lattice masses are now considered to be vibrating with small
amplitudes, a,, about their mean positions in the lattice as shown in
Fig. 1(b), their equilibrium energies are no longer zero. Instead, even at
equilibrium each mass possesses a constant vibrational energy U,. This
can be considered as equivalent to the situation depicted in Fig. 4(b)
where the periodic lattice potential has a plateau of width 2¢, and height
Vo = U, above zero at each lattice site. In this case

N =V =V, = Vn+1 =Vysa...=Vp
and equation (3.3) becomes

omv,) ik A~ Vi
ot =§g‘z(vn+l + Uy —21],,)—‘127770(7}11),,) (35)

which is seen to be identical to equation (2.17) previously obtained if
Vo/h is set equal to v,. The differential equations (2.1a) and (2.17) are thus
seen to be forms of the general (non-relativistic) time-dependent Schroedin-
ger equation for a stationary or vibrating atom, respectively, in a periodic
row lattice. In order to put the Schroedinger equation into the forms
presented in equations (2.1a) and (2.17) it was necessary, first, to extend
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the usual meaning of the second derivative operator in order to allow its
use in a discontinuous (but regular) medium such as a crystal lattice; and,
second, to consider that momentum waves can be associated with moving
particles in place of {(or in addition to) the usual probability waves of
contemporary wave mechanics. Further, although a given mass may move
from one lattice site to another, the differential equation used to describe
its velocity is valid only in the immediate vicinity of a lattice point and
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Figure 4.—Schematic representation of periodic potential energy variation V(x)=—

V(x +d) in row lattice of Fig. 1(a) for stationary point masses at zero equilibrium

potential [compare Fig. 1(a)], and (b) for vibrating point masses at equilibrinm potential
of V, [compare Fig. 1(b)].

hence does not provide a description of exactly what happens to a migrating
mass (atom) between lattice points. This, of course, follows from the idea
that a real-property (momentum) wave is to be associated with a moving
mass or particle and that the property in question can be defined only in
the vicinity of a particle and not elsewhere (Fitzgerald, 1966a, b). Most of
the atoms in a crystal lattice at any given time are certainly in the vicinity
of regular lattice points and therefore a general equation for lattice-site
atoms as opposed to interstitial or irregularly located atoms is of interest.
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4. Extension of the Results to Three Dimensions

The momentum transfer equation for a one-dimensjonal lattice with
vibrating atoms can be readily extended to three dimensions. This extension
has been described in detail elsewhere (Fitzgerald, 1966a, b) for stationary
atoms and therefore the procedure is only briefly sketched here. Consider
for convenience an infinitely large, cubic lattice with spacing d and vibrating
point masses, m. Momentum transfer may then occur between adjacent

n—1,rt+1l,s

ntlr—1,s /n+l,r,s n+lrt],s
X (a) .

z
#rstl
ds
dg'_'o_'h"—""y
+
d nrtl,s
n+l,r,% nrs
x C‘P
(b

Figure 5.—(a) Schematic drawing showing location and designation of nearest and
next-nearest neighbors in the xy plane only for a point mass at #, r, s in a cubic lattice.
Here simultaneous multiple momentum transfer to and from the mass at #, #, s is assumed
as indicated for the x-direction by arrows between atoms. Momentum transfer in the
x-direction to the mass at n, r, s is not considered to take place from the two masses
(n,r—1,5and n, r + 1, s) along the y axis, however. Similar designations and diagrams
apply to the additional nearest and nexi-nearest neighbor masses and for momentum
transfer in the y and z directions (compare text). In fact, multiple momentum transfer
apparently does not occur since its assumption leads to contradictions as discussed
in the text. (b) Diagram and designation of adjacent masses along the x, y, z axes for a
point mass at #, r, s in a lattice with spacings d;, da, o3 in the x, y, z directions as shown.
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masses in various directions within the lattice, but in particular we investi-
gate the possibility of simultaneous momentum transfer occurring to and
from a general mass located at (n,r,s) and its nearest and next-nearest
neighbors in the lattice as indicated in Fig. 5(a). Three differential equations
for the velocity components u, v, w in the x, y, z directions can then be set
up for a general mass point at n, r, s in terms of a nearest-neighbor momen-
tum transfer constant K, and a next-nearest neighbor momentum transfer
constant L,. Since these three equations represent statements of conserva-
tion of momentum in the three directions, x, y, z, they are uncoupled.
That is, momentum is independently conserved in each direction and the
differential equation for the velocity u, , ; contains no terms in v or w, etc.
The absence of coupling makes solutions to these equations relatively
simple; they are of the form,

Uy p,s = Aexp [—iQmvt — kynd — kyrd — k4 5d)]
Vp.p. s = Bexp [—i(2mvt — kynd — kyrd — k4 5d)] .0
Wy,r,s = Cexp [—iQRmvt — kynd — kyrd — ks sd)]

and lead to three different v versus k characteristics for any general direction
(ky,ka,k5) in k space. The occurrence of three v — k curves for particle
waves in the lattice raises a fundamental difficulty which indicates that the
original assumption of simultaneous momentum transfer through a mass
from and to multiple lattice masses is incorrect. That is, three » — k curves
will result generally in three different values of group velocity v, = 27 dv/dk
for a given value of £ and thus require one mass to have three different
particle velocities (v, = vpapicre @t small values of k). This is in violation of
what has been termed (Fitzgerald, 1966b) the ‘Supreme court’ condition of
‘one mass, one velocity’ and hence leads to the conclusion that momentum
transfer occurs from a lattice mass to only one other mass at a time. Only
in this way can a single v — k curve be assured for any direction in the
lattice. Therefore the one-dimensional momentum transfer equations apply
directly to three-dimensional lattices where the spacing, d;, between
lattice masses in a particular direction, k, is used. In particular, for a lattice
with spacings d,, d,, d; in the x, y, z directions as shown in Fig. 5(b) we
can write three independent momentum transfer equations,

omu, . 5 ik .
al" — = 2d z(un+l,r,s T Upor,r,s— 2un,r,s) - lz”"v(mun,r,s)
1

o(mv, , . ih ,
»(TttL_) = Ed? (vn,r+l,s + vn,r—l .8 2Un,r,s) - lzﬂvv(mvn,r,s) (42)
a(’/r”'vn,r,s) _ i
ot 2d?
It also can be argued from this type of analysis that momentum transfer in

any particular direction in a lattice takes place only between masses (atoms)
aligned in that direction. Then transverse momentum transfer of the type

(Wn,r,s-H + Wa,r,s—1 — 2Wn,r,s) - iZWVU(mwn,r,s)
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indicated in Fig. 6 would be ruled out. These restrictions on the type of
momentum transfer that can take place between lattice masses are in
agreement with a macroscopic ‘collision’ process for momentum transfer.
We might, for instance, allow simultaneous multiple momentum transfer
from a number of masses fo a single mass, but certainly do not expect
simultaneous motion of the mass in several different directions in order to
transfer momentum from itself to other masses! (Such multiple transfer
could result only from a breaking-up or fissioning of the mass into smaller
fragments.)

The restriction to ‘central’ or in-line momentum transfer between lattice
masses allows the three-dimensional Schroedinger equation to be easily

yT
nrtl

O O O
t

A

o =N —

O

ntlr

O————0
4

n—l,r n,
|
1
!

O @) o —

x
nmr—1

Figure 6.—Representation of x — y plane of a cubic lattice showing non-occurrence

(dashed arrows) of transverse x-momentum transfer between masses such as n, r + 1;

n, r; and n, r — 1, Instead, in-line or ‘central’ momentum transfer takes place from one
atom to another as shown by solid arrows.

applied to obtain results identical to those in equation (4.2). The Schroedin-
ger equation for an atom of mass, m, at a lattice site », 7, 5 in a three-
dimensional crystal may be written as,

az‘:l'n,r,s azl;l'n,r,s 82l;[’n,r,s 2m 2in'lalpn,r,s
B R i = R L O T A7

~0 (4.3)

If the momentum vector P is now substituted for ¢ the Schroedinger
equation becomes

P, . ) PP, ) P,y 2m 2imoP, ,
n,r,s/ n,r,s n,r,s) _“ < 1S 4
e T e T e g DBt “4)
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which results directly in three independent scalar equations of the same
form for the x, y, z components of momentum; P, = mu, P, = mv, P, = mw,

Oty ) | Pty ) | Pty

ox? 9y? 0z>
2m 2imd(mu, , )
- ﬁ Vn,r,s(mun,r,s) + 7 —Bt— =0
az(mvn,r,s) az(mvn,r,s) + az(mvn,r,s)
- ax? ay* 0z*
2m 2imo(mv, . s)
_ﬁ Vn,r,s(mvn,r,s)—lf_? ot =0 (45)
az(mw,n,r,s) az(mwll)l‘,s) az(mwn,r,s)
ox? + oy? T
2m 2im d(mi ) _

—ﬁz— Vn,r,s(mwn,r,s)+ 0

7 ot

Replacing the second derivative operators by second difference quotients
in the same manner as previously done for one-dimensional lattices, we
note that for the x-component of velocity, for example, these become
[compare Fig. 4(b)]:

*(mu, . )| m
a‘cnz,r,s =Ei(un+l,r,s+un—l,r,s—zun,r,s)
4 X=Xn,r,s 1
o4 (mu, , ) m
_ay+,r,s :@(un,r+l,s+un,r—l,s_zun,r,s) (46)
y=Yn,r,s
oX(mu, , o) m
4—622’& =d—§(un,r,s+l +un,r,s—l —'2un,r,s)
Z=2Zpn,r,s 3

Therefore the expression for the time rate of change of the x-component of
momentum at », r, s becomes, according to equation (4.5),

omu, , ) ik
#ﬁi - 72(1'{"+1,Y,S +Upirs ™ 2un,r,5)
1

in

+ 2d22 (u",f+1,s + un,r—l,s — Zu,,],,,s)
ih

+ 2d Z(lln,r,s+1 -+ Up r,s—1— 2un,r,s)
3

2
- 17711 Vn,r,s(mun,r,s) (47)
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The first term on the right-hand side of this equation represents the net
transfer of the x-component of momentum from masses at n + 1, , s and
n—1, r, s along the x axis to the lattice mass at the #, r, s. The second and
third terms, however, represent a fransverse net transfer of x-component
momentum from masses at n, r + 1, s; 1, r — 1, s and masses at n, r, s + 1;
n, r, s — 1 along the y and z axes respectively. Such transverse or sideways
momentum transfer is not possible according to our previous remarks
(compare Fig. 6) and hence these terms must be zero. Entirely similar
results are obtained for the y and z component equations of equation (4.5)
so that these three component equations become identical to those of
equation (4.2) where V,, . , =V, and v, = Vy/h as before.

The same result can be obtained using the three-dimensional Schroedinger
equation if we restrict our attention to plane momentum waves at the outset.
However, the physical reasons leading to the final equations are quite
different in the two cases. In the case originally discussed here we allow
variations in P, = mu with y and z, but rule out transfer of this momentum
in directions perpendicular to x; this results in 92P,/0z% = 0*P,[dy* =0,
according to the second difference quotient expressions for these derivatives
and the resulting terms which appear in the momentum transfer equation
as exemplified by equation (4.7). For plane waves we specify that P, is a
function of x only and therefore constant in y and z directions; 8%P,/d)?
and 02P,/0z* can therefore be set equal to zero at the outset or their
equivalent second difference quotients [equation (4.6)] set equal to zero
SINCE NOW Uy y g s = Up,p—1,5 = Uy »r,s €LC.

5. Conclusions

Consideration of crystal lattices with point masses vibrating at a common
frequency, v,, about mean lattice sites requires the addition of a term,
i2mmy,(mv,), to the differential momentum transfer equation previously
adduced for particle momentum waves in a lattice. The modified equation
[equation (2.17)] also results (in both one and three dimensions) from
application of the time-dependent Schroedinger equation to describe the
behavior of a general nth mass within the vicinity of a lattice site. A particuar
solution to this momentum transfer equation has been presented in which
traveling particle momentum waves of frequency », have their amplitudes
modulated at a higher frequency, »,, to produce a type of drifting standing
wave pattern as shown in Fig. 2. For convenience an ‘Einstein’ model of
the crystal lattice was used in which the masses vibrate independently, but
with a common frequency, »,, about their mean lattice positions. Such
independent vibrations of each mass can be expected in general to have
random phase relations even though they may have identical velocity
amplitudes, B,. However, if we imagine that by some happy accident all
of the independent vibrations of the atoms in a particular crystal are in
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phase (...0,_, = 8,=0,.,... = 0) then it is possible to write a solution for
the velocity, v,, of a general nth mass of the form

v,(t) = Boexp [—iQmv, t + 0)] + By exp{~i[2m(v, + v, t + 0 - knd]}

= (1 + %1 exp [—iQmy,t — knd)]) Byexp [—iQ2nv,t + 0)] (5.1)
0
‘modulating’ wave ‘carrier’ wave

Of course, this happy accident seems quite improbable, since it would
correspond to an intrinsic oscillatory translation of an entire crystal sample.
On the other hand, if we recall the mosaic structure of real crystals which
are broken up into fragments of micron size, it could be imagined that such
crystalline substructures vibrate randomly with respect to other sub-
structures, but that the masses (atoms) of each substructure are in phase.
Then equation (5.1) above could apply to the velocity of a general nth mass
within a finite lattice segment with discrete values of the wave vector, k,
required.

Another alternative is to consider that the intrinsic vibrations of the
lattice masses result from vibrational modes of the lattice as a whole
(Debye or Born-von Karman models) instead of independent vibrations
(Einstein model). Then a regular, periodic variation of the intrinsic vibration
velocity will occur along a one-dimensional lattice for example,

vu(vib.) = Byexp [<iQQav, t — k, X)] (5.2)

where v, = ¢ /A; ¢ is the velocity of sound in the lattice considered as a
continuum (Debye model)

or, v,(vib.) = Byexp [-i(2mv, t — k,nd)] (5.3)

where, for a one-dimensional lattice and nearest neighbor interactions only,
v, = 17V (K,/m)sink,d|2; K, is an elastic interaction constant between
adjacent lattice masses (Born-von Karman model).

In these latter cases it is no longer possible to characterize the intrinsic
lattice vibration by a single frequency, v, ; rather a collection of vibrational
modes of different frequencies is supposed to be present. The Debye model
does lead to an accumulation of vibrational modes at the highest frequency,
vp, however. Similarly, it is often found on the basis of the Born-von
Karman model that a high preponderance or accumulation of modes about
one very high frequency does occur (Fitzgerald, 1966b). Thus the use of a
single frequency, v,, to characterize the vibrational modes of a lattice
remains a fairly good approximation in many cases.

A study of additional solutions of the type given by equation (5.1)
promises to provide the basis for a more detailed description of the propaga-
tion of particle momentum waves produced by the application of a uni-
directional force or load on a crystal, and the interaction of such waves with
the intrinsic vibrational modes of the crystal leading to a release of lattice
binding energy (Fitzgerald, 1966b; Fitzgerald & Wright, 1967).
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