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Abstract 

A momentum transfer equation previously used to describe non-elastic deformation in 
crystalline solids represented by point masses at fixed lattice positions is extended to take 
into account the existence of intrinsic (e.g. thermal) small amplitude vibrations of the 
masses about their mean positions in a lattice. Use of the time-dependent Schroedinger 
equation to describe momentum transfer and deformation is also discussed in terms of 
this vibrating point-mass lattice model. The result is that a modified and identical dif- 
ferential equation for momentum transfer is obtained from each approach; some solutions 
to this equation are presented. The previous particle momentum wave frequency depen- 
dence on wave vector and resulting applications to non-elastic deformation are un- 
changed, but these particle momentum waves can now be considered as modulating the 
usual high-frequency waves associated with the elastic modes of a crystalline solid. 

1. Introduction 

A connection between particle waves, momentum transfer, and non- 
elastic deformation in crystals has been presented in recent publications 
(Fitzgerald, 1966a, b). The differential equation used in this previous work 
assumes an equilibrium or undisturbed lattice which can be represented by 
regularly spaced point masses at fixed positions. The assumption of  point  
masses is valid since linear momentum transfer between atoms is the process 
in question, and the mass o f  an a tom is heavily concentrated in a nucleus 
of  very small diameter compared to interatomic distances. On the other 
hand, the atoms of  a real crystal are not  stationary even at absolute zero, 
but  instead vibrate with small amplitudes and high frequencies about  
regularly-spaced mean positions. The existence of  such quantized vibra- 
tional modes for lattice atoms was, in fact, used in the original particle-wave 
description o f  deformation in order to account  for hypervelocity phenomena  
and phonon  fission (Fitzgerald, 1966b; Fitzgerald, 1964). It  is clear that  a 
more realistic lattice model  will be one in which the existence of  small- 
amplitude atomic vibrations at equilibrium is recognized at the outset. 
Such a 'vibrating lattice' model is considered in the present work and some 
of  the necessary modifications and extensions of  the particle-wave view of  
deformation are presented. The role of  the t ime-dependent Schroedinger 
equation in momentum transfer and deformation (Fitzgerald & Tasi, 1967) 
is also discussed in terms of  a vibrating lattice model. 
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42 EDWIN R. FITZGERALD 

2. Momentum Transfer Between Vibrating Atoms in a One-dimensional 
Lattice 

Consider the infinitely long one-dimensional lattice of point masses, m, 
and spacing d as shown in Fig. l(a). If the masses are assumed to be 
stationary in the absence of  external forces, then the differential equation of  
mot ion for a particle momentum wave in the lattice produced by an applied 
force can be written in terms of  a general nth mass as 

Ov. 
m ~  = Kp(v.+ ! + v.-1 - 2v.) (2.1) 

where  v. is the veloci ty of  the n th  mass,  etc. a n d  Kp is cons idered  to be 
e i ther  a m o m e n t u m  transfer constant or  a velocity interaction constant for  
the  la t t ice  as discussed in  detai l  e lsewhere (Fi tzgerald ,  1966b). F o r  ou r  
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Figure 1.--Schematic drawing of an infinite one-dimensional (row) lattice of point 
masses. (a) Stationary masses, and (b) vibrating masses with amplitude of vibrations, ao, 

much less than lattice spacing, d. 
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purpose here it is convenient to rewrite equation (2.1) in the form of a 
continuity equation for momentum transfer or flow along the lattice, 
namely, 

~(m~.) 
Ot - Kp(v,_~ - v,) - Kp(v, - v,+~) (2.2) 

where now 

~(mv.) 
St 

K,(v,_l - v,) 

Kv(v, - v,+0 

Kp 

represents the net time rate of change of momentum 
of  the nth lattice mass 

is the rate of momentum transfer from mass n - 1 
to mass n 

is the rate of momentum transfer from mass n to 
mass n + 1 

is the m o m e n t u m  transfer constant for the lattice 

According to equation (2.2) and the above remarks, we are postulating that 
as a result of an applied force some type of momentum transfer process 
occurs in the lattice for which the rate of momentum transfer depends on 
the velocity differences between adjacent masses. The exact nature and/or 
value of Kp is then of great importance. Fortunately it is possible to obtain 
an exact expression for Kp by writing a wave solution (Fitzgerald, 1966a, b) 
for v,, in equations (2.1) or (2.2) of the form 

v,, = Bexp [-i(27rv~ t - knd)] (2.3) 

where k = 2~r/)~ is the wave vector, d is the lattice spacing, B is a constant, 
and the frequency vp is given by 

- i 2 K ,  sin2 k d  (2.4) Up = - -  
~rm 2 

According to the particle-wave view of deformation (Fitzgerald, 1966a, b) 
equation (2.4) gives the frequency of a particle (momentum) wave in a 
lattice. In the limit of long wavelengths (small k) this frequency expression 
must therefore reduce to that for a free particle, i.e., 

lim--i2Kpsin2.V.v=kd h k2 (2.5) 
k.0 ~rm 2 47rm 

where hkZ/4~m is the free-particle frequency. For small values of k the sine 
can be replaced by its argument in equation (2.5) so that 

Kp = ih/2d 2 (2.6) 

and equation (2.1) becomes 

8v, ih 
m Ot - 2 d  2 (V,+l + v , - i  - 2v,) (2.1a) 
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Here an exact expression for Kp is obtained by imposition of the physical 
boundary condition that at long wavelengths the variation of frequency 
with wave vector for a particle wave in a lattice must be identical with that 
for a free particle (Fitzgerald, 1966a, b). 

Now consider a lattice in which the point masses vibrate independently 
with small displacement amplitudes, a0, about  mean positions a distance d 
apart even in the absence of any external forces as shown schematically in 
Fig. l(b). At a given temperature the intrinsic vibration frequency, vv, is 
assumed constant and the same for all atoms in the lattice in accordance 
with the Einstein model (Einstein, 1906, 1911) so that the displacement of a 
general nth mass from its mean position at any time, t, in the undisturbed 
lattice is given by 

a, == aoexp [-i(27rvv t + 0,,)] (2.7) 

The displacement amplitude, a0, is assumed to be so small compared to d 
that no changes in the lattice spacings are noticeable. The amplitude of the 
corresponding velocity oscillations, however, are not necessarily negligible 
since vv may be large (of the order of 1012 to 10 TM cps). Thus if we dif- 
ferentiate equation (2.7) with respect to time to obtain the vibrational 
velocity of a general nth mass, the result is 

v,(vibrational) = -i2~rv~ ao exp [-i(27rv~ t + 0,)] (2.8) 

or  

v,(vib.) = b0 exp [-i(2~rv~ t + 0n)] (2.8') 

where bo =-i2rrvvao. Hence the amplitude of the velocity oscillation is 
2~rvv times the displacement amplitude and not necessarily small for large 
values of v~. For interatomic distances, d, of the order of 3 x 10 -s cm values 
of vibrational displacement amplitude, a0, up to 3 • 10 -~  cm can be 
considered negligible, but these may result in vibrational velocity amplitudes 
of the order of 1800 cm/sec which cannot be neglected ! 

Consequently the general expression for the time rate of change of 
momentum for a general nth lattice mass given in equation (2.2) must be 
modified to take into account time variations of the equilibrium or self 
vibrational momentum as well as the rate of momentum transfer to and 
from the nth mass by adjacent masses which may result from external forces 
acting on the lattices. The continuity equation for momentum transfer 
through the nth mass then becomes 

a(mvn) ~t - Kp(vn-1 -- vn) - Kp(v, - v,+l) - i27rvv(mv~) (2.9) 

where the term i2rrv,(rnvn) represents the time rate of change of momentum 
as a result of vibration, and the other terms have the same significance as in 
equation (2.2). 
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Equation (2.9) can be rewritten 

m ~ n  = Kp(vn+ 1 q_ vn-I - 2Vn) -- i2~rv~(mv,) 
UL 

(2.10) 

As before, a wave solution for v, can be assumed to be of the form 

v, = B exp [ - i (27rv t  - k n d ) ]  (2.11) 

This turns out to be a valid solution provided the frequency v is given by 

-2 iKp . z k d  
v = 7rrn sm ~- + v~ (2.12) 

= vp + v~ (2.13) 

where vp is the frequency previously obtained [equation (2.4)] for a non- 
vibrating lattice. In order to evaluate Kp we again consider the limiting 
value of v for long wavelengths (small values of  the wave vector, k) and 
note that 

-2 iKp k 2 d z 
lim v + v~ (2.14) 
k-~0 7rm 4 

We expect that the closely spaced potential variation within the lattice will 
have no influence on particles with long wavelengths ( k - +  0) and the 
frequency expression given by equation (2.14) should be identical to that 
for a non-lattice particle of the same mass moving in an external field-free 
region, but with some kind of constant intrinsic or self energy Uv. A non- 
rigid or deformable particle, for example, could have a constant strain 
energy or even be deforming in an oscillatory manner as its center of mass 
moves with constant velocity, v. In any case, the general expression for the 
frequency of the de Broglie wave associated with such a particle of mass m 
is easily obtained from the expression for its total energy, E, 

E = hv = �89 2 + U v 

where mvZ/2  is the kinetic energy resulting from the translational velocity, 
v. Then 

h k  2 Uv 
~'=4~m -~ h (2.15) 

and by setting U~/h = v~ we again find from equations (2.14) and (2.15) 
that, 

Kp = i h / 2 d  z (2.16) 

The differential equation for momentum transfer in a lattice with vibrating 
point masses [equation (2.10)] therefore becomes 

Ot - i ~ d  z (v,+ 1 + v , - i  - 2v,) - 27rye(my,)  (2.17) 
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with a solution 

v~ = B {exp-i[2zr(v v + v~) t - knd]} (2.18) 

where v v = (h/zrmd 2) sin 2 kd/2 and v~ = constant. 
It is not necessary to consider that a constant term appearing in the 

expression for the total energy of a field-free particle results from deforma- 
tion of the particle, of course. A rigid particle moving in a region of constant 
potential will also possess a potential energy, V = U~, although remaining 
field-free in the sense that no force is exerted on it by a constant potential 
(i.e., grad V = 0). 

Equation (2.18) can be rewritten in the form 

v, = B exp (-i2~v~ t). exp [-i(2~v v t - knd)] (2.19) 

The first term of equation (2.19) represents a time-dependent amplitude 
for the travelling particle wave which is itself described by the second term 
and has a frequency Up and wave vector k. Thus at a given time, t = tl, 
equation (2.19) describes a wave of amplitude, BI = B e x p ( - i 2 ~ v ,  tl), and 
wavelength A = 2 r / k  extending along the row lattice of Fig. 1. At some 
later time, t2, this wave will not only be shifted along the lattice, but will 
also have a different amplitude Bz=Bexp( - i27rv~ t2 ) .  For v~>>% the 
amplitude variation of the travelling particle wave will occur very rapidly 
compared to the period of the travelling particle (momentum) wave. 
Hence if the velocity variation along the row lattice of Fig. l(b) is observed 
during some very short time interval, At, instead of instantaneously, then 
the amplitude will oscillate through its range ( -B to B) while the travelling 
velocity wave moves a negligible distance along the lattice. The result is 
that a kind of standing wave pattern will be observed (for the velocity) 
during the interval At as depicted in Fig. 2. That is, if 

1/vp >> A t  >> 1/vv (2.20) 

the resulting velocity variation of the point masses (atoms) along an initially 
vibrating row lattice will appear as in Fig. 2(a). From Fig. 2 it is clear that 
during certain larger time intervals between the observational time intervals, 
the standing wave pattern will move along the row lattice with a propagation 
velocity, ep, as depicted in Fig. 2(b). Hence equation (2.19) [and equation 
(2.18)] represents in this view a slowly moving, standing velocity wave in 
the row lattice. The translational or shift velocity along the row lattice of 
this (somewhat paradoxical) travelling standing wave is simply the propaga- 
tion velocity of the particle momentum wave (cp = 2~vp/k) as previously 
discussed elsewhere (Fitzgerald, 1966b). The situation represented by 
equation (2.19) and Fig. 2 in which the amplitude of the propagating wave 
is modulated at a frequency much greater than that of the wave is, of 
course, quite the reverse of the usual amplitude modulation considered in 
which vv would be less than vp. We might, in fact, be tempted to rewrite 
equation (2.19) in a way such that the amplitude is modulated at the lower 
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frequency (vp) but  since vv is a constant  independent o f  the wave vector k, 
the expression exp[-i(2rrvvt-  knd)] does not represent a travelling wave 
of  frequency vv nor  have any obvious physical meaning. 

Instead o f  an infinite row lattice as depicted in Fig. 1, we next consider 
vibrating atoms in a one-dimensional lattice of  finite length, S = Nd, with 
fixed ends as shown in Fig. 3. That  is, we specify that vo(t) = vN(t) = 0 for 
all t. Because o f  the zero velocity conditions at the ends o f  this lattice 

[ n 

0 < A t < h  

x 

Vn I , ep t2 < At < ta 

(b) 

Figure 2.--Velocity v.s. distance x along the row lattice of Fig. l(b) for a momentum 
wave [compare equation (2.19) of text] observed during a very short time interval At 

(a) between 0 and t~, and (b) at a later time between t2 and t3. 

segment a standing wave solution to the differential equation for momentum 
transfer [equation (2.10)] through a general nth mass of  the lattice seems 
appropriate,  

v,(t) = [BI exp (iknd) + B2 exp (-iknd)] exp (-i2~rvt) (2.21) 

and this does prove to be a solution. The condit ion that  v,(0) = 0 requires 
that B1 = -B2,  so that the solution becomes 

v,(t) = 2iB1 exp (-i2~rvt) sin knd (2.22) 
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Figure 3.--Schematic drawing of a finite one-dimensional (row) lattice of vibrating point 
masses, m, with a length S = Nd and fixed ends at 0 and N. Amplitude of vibration, a0, 

is much less than the lattice spacing, d. 

The condition that vN(0)= 0 requires in addition that s i n k N d =  0 which 
follows if k N d  = qw where q is an integer, i.e., discrete values of the wave 
vector, k, are now demanded such that 

k = qrr/Nd where q = 1,2, 3 . . .  ( N -  1) (2.23) 

The necessary frequency condition on v again turns out to be, 

-2iKp sin2 k d  
v =  7rm ~ - + v ~  

: ~p -~- ~'v 

(2.24) 

(2.12) 

(2.25) 
(2.13) 

however, where Kp = iKp = ih/2d 2 as before and vv = constant. Now, 
discrete values of k and therefore v are necessary as given by equation (2.23). 
Minimum and maximum values of  k are thus wiNd and ( N -  I)7r/Nd % rr/d 
corresponding to respective minimum and maximum values of up 

h 
vp(min) =~ 8mSZ (for S = Nd)  

h 
vp(max) ~ wind2 (for N large) (2.26) 

The general prevalence of mosaic structures in real crystals indicates that 
finite lattice segments will generally be encountered in momentum transfer 
through crystals and a typical length of the order of a few microns is to be 
expected (Fitzgerald, 1966b; Hirsch, 1956). Thus characteristic values of  
up may range from 10 / to 10 a~ cps with accumulations of  these particle wave 
modes near the ends of the frequency spectrum (Fitzgerald, 1966a, b). 
Hence the situation previously considered, vv>> v~, is one which will 
generally prevail. For example, on the basis of  the Einstein model (Einstein, 
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(1906, 1911) chosen to represent the vibrating crystal lattice, characteristic 
Einstein temperatures, 0E, can be determined from experimental specific 
heat-temperature data where 0E = hvv/k or vv = kOE/h = 0"208 x 10110~ 
(here k is Boltzman's constant). Values of 0z obtained in this way are 
between 100 and 400 ~ for many crystalline solids]'; for aluminum 
0E ~ 350 ~ corresponding to a vibrational frequency of 7.3 • 1012 cps. 
On the other hand, the distance of closest approach, d = 2.86 • 10 -8 cm, 
for the aluminum lattice corresponds to a maximum particle wave frequency 
of v~(max) = 8.25 • 109 cps. Thus the condition that v, >> v, is easily met 
even for the highest particle wave modes in this case. For solids with larger 
interatomic spacings or heavier atoms values of vp(max) will be even lower 
[compare equation (2.26)]. 

3. The Schroedinger Equation for a Vibrating Atom in a One-dimensional 
Lattice 

A close connection between the momentum transfer equation [equations 
(2.2) and (2.6)] and the general time-dependent Schroedinger equation for 
stationary atoms in a row lattice has been demonstrated previously 
(Fitzgerald & Tasi, 1967). To show this it is only necessary to express the 
second derivative in terms of a second difference quotient and substitute 
the linear momentum, my,, for the wave property r  to be associated with 
a general nth mass (atom) of the lattice. That is, the time-dependent 
Schroedinger equation for one of the masses, m, of the row lattice with 
stationary equilibrium positions shown in Fig. l(a) is, 

0 zr  2m 2im04, 
ON 2 h2 V, ~b, q h Ot = 0 (3.1) 

If r is a continuous function of x then the second differential operator has 
its common meaning that 

[ lim A~b] 
a2~ 2 . A r  

- hm ~xCx 2 = lira 
O• 2 Ax.O X Ax.O AX 

since ~b is defined everywhere in the interval Ax. However if ~b is a real- 
property of the type that can be defined in the vicinity of the mass point in 
a lattice but not elsewhere, then a different meaning must be attached to the 
second derivative operator. Following Liebnitz (Fitzgerald & Tasi, 1967) 
the second derivative of the function r is therefore taken to be a second 
difference quotient such that 

a2 . 1 
_ d2 (~b.+, + 4n-1 --  2~b.) (3 .2 )  ax 2 [x-~. ax 2 

where 4, = r etc., and d is the fixed lattice spacing shown in Fig. l(a). 
i A value of 0E ~ 1300~ is used to fit the experimental specific heat-temperature 

variation for diamond (C). 
4 
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Then if the property ~b. to be associated with the motion of the nth mass is 
taken to be a real-property, and in particular the linear momentum,  
~b. = my.,  we have from equations (3.1) and (3.2), 

1 
d 2 (q~n+l + q~n-I - 2~bn) 2m Vn ~, ~ 2ira O~b, 
- -  - ~ -  h Ot = 0  

rearranging and substituting ~b, = my,, 

O(rnv.) ih i 
Ot = 2d -z(v"+l + v,_a - 2v,) - h V, mv. (3.3) 

Equation (3.3) above can be considered as an alternative form of the 
Schroedinger equation for a single (but completely general) a tom of a row 
lattice. Stationary point masses (atoms) in such a lattice are assumed to be 
in equilibrium at the lattice points as a result of the existence of a periodic 
potential energy V(x) = V(x  + d) as shown in Fig. 4(a). The absolute value 
of such a potential is arbitrary and is selected in this figure to be zero at the 
lattice points, n - 2, n - 1, n, n + 1, n + 2, etc. Then 

�9 . .  V n _  2 = V n _  1 = V n = V n +  1 = V n + 2 . . .  = 0 

where V. = V(x.), etc. Equation (3.3) therefore reduces to 

O(rnv,) ih 
Ot - 2d z(v.+l + v,-i - 2v,) (3.4) 

for fixed or stationary atoms in a row lattice. This is identical to the momen- 
tum transfer equation [equation (2.1a)] obtained in Section 2 on the basis 
of  linear momentum conservation between adjacent masses in the lattice. 

I f  the lattice masses are now considered to be vibrating with small 
amplitudes, a0, about their mean positions in the lattice as shown in 
Fig. l(b), their equilibrium energies are no longer zero. Instead, even at 
equilibrium each mass possesses a constant vibrational energy Uv. This 
can be considered as equivalent to the situation depicted in Fig. 4(b) 
where the periodic lattice potential has a plateau of width 2a0 and height 
V0 = U~ above zero at each lattice site. In this case 

�9 . .  V . - 2  = V . - 1  = V .  = V . + l  = V . + : . . .  = V0 

and equation (3.3) becomes 

O(mv.) ih 
0t 2 ~  (V,+l + v,-i  - 2v,) - i 2 7 r ~  (my,) (3.5) 

which is seen to be identical to equation (2.17) previously obtained if 
Vo/h is set equal to vv. The differential equations (2.1a) and (2.17) are thus 
seen to be forms of the general (non-relativistic) time-dependent Schroedin- 
get equation for a stationary or vibrating atom, respectively, in a periodic 
row lattice. In order to put the Schroedinger equation into the forms 
presented in equations (2.1a) and (2.17) it was necessary, first, to extend 
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the usual meaning of the second derivative operator in order to allow its 
use in a discontinuous (but regular) medium such as a crystal lattice; and, 
second, to consider that momentum waves can be associated with moving 
particles in place of  (or in addition to) the usual probability waves of 
contemporary wave mechanics. Further, although a given mass may move 
from one lattice site to another, the differential equation used to describe 
its velocity is valid only in the immediate vicinity of a lattice point and 

! /VVV9 
(a) 

0 
--~ 1,~-- ao 

(b) 

Figure 4.--Schematic representation of periodic potential energy variation V(x)= 
V(x + d) in row lattice of Fig. l(a) for stationary point masses at zero equilibrium 
potential [compare Fig. l(a)], and (b) for vibrating point masses at equilibrium potential 

of Vo [compare Fig. l(b)]. 

hence does not provide a description of exactly what happens to a migrating 
mass (atom) between lattice points. This, of course, follows from the idea 
that a real-property (momentum) wave is to be associated with a moving 
mass or particle and that the property in question can be defined only in 
the vicinity of a particle and not elsewhere (Fitzgerald, 1966a, b). Most of 
the atoms in a crystal lattice at any given time are certainly in the vicinity 
of regular lattice points and therefore a general equation for lattice-site 
atoms as opposed to interstitial or irregularly located atoms is of interest. 
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4. Extension o f  the Results to Three Dimensions 

The momentum transfer equation for a one-dimensional lattice with 
vibrating atoms can be readily extended to three dimensions. This extension 
has been described in detail elsewhere (Fitzgerald, 1966a, b) for stationary 
atoms arid therefore the procedure is only briefly sketched here. Consider 
for convenience an infinitely large, cubic lattice with spacing d and vibrating 
point masses, m. Momentum transfer may then occur between adjacent 

Z 

n -  l , r -  l ,s l n -  l ,r ,s  n -  l,ra" l ,s 

- .r  d ...,~,,'*" a ~ , y 
n, r - I, s ~ "  1 " / ' r \  /"~n, r + 1, s 

f "  ~ . ~  " - . a / n ,  r, s / . . . . . . .  
/ . . , - "  /~ i \ . i  

! b / 
n§ t , r - l , s  S n + l , r , s  n~- l , r+l ,~  

O) 

n , r §  ~,s 

x ~ 

Figure 5.--(a) Schematic drawing showing location and designation of nearest and 
next-nearest neighbors in the xy plane only for a point mass at n, r, s in a cubic lattice. 
Here simultaneous multiple momentum transfer to and from the mass at n, r, s is assumed 
as indicated for the x-direction by arrows between atoms. Momentum transfer in the 
x-direction to the mass at n, r, s is not considered to take place from the two masses 
(n, r - I, s and n, r + 1, s) alor~g the y axis, however. Similar designations and diagrams 
apply to the additional nearest and next-nearest xxeighhor masses and for momentum 
transfer in the y and z directions (compare text). In fact, multiple momentum transfer 
apparently does not occt~r since its assumption leads to contradictions as discussed 
in the text. (b) Diagram and designation of adjacent masses along the x, y, z axes for a 
point mass at n, r, s in a lattice with spacings all, d2, d3 in the x, y, z directions as shown. 
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masses in various directions within the lattice, but in particular we investi- 
gate the possibility of simultaneous momentum transfer occurring to and 
from a general mass located at (n , r , s )  and its nearest and next-nearest 
neighbors in the lattice as indicated in Fig. 5(a). Three differential equations 
for the velocity components u, v, w in the x, y, z directions can then be set 
up for a general mass point at n, r, s in terms of a nearest-neighbor momen- 
tum transfer constant Kp and a next-nearest neighbor momentum transfer 
constant Lp. Since these three equations represent statements of conserva- 
tion of momentum in the three directions, x, y, z, they are uncoupled. 
That is, momentum is independently conserved in each direction and the 
differential equation for the velocity u . . . . .  contains no terms in v or w, etc. 
The absence of coupling makes solutions to these equations relatively 
simple; they are of the form, 

u. .... = A exp [-i(2~rvt - k l  n d -  k 2 r d -  k 3 sd)] 

v.,r,~ = Bexp [- i (2rrvt  - k l  nd - k 2 rd - k 3 sd)] (4.1) 

w .... ~ = Cexp [- i (2rrv t  - k l  r i d -  k2 r d -  k 3 sd)] 

and lead to three different v versus k characteristics for any general direction 
( k l , k z , k 3 )  in k space. The occurrence of three v - k curves for particle 
waves in the lattice raises a fundamental difficulty which indicates that the 
original assumption of simultaneous momentum transfer through a mass 
from and to multiple lattice masses is incorrect. That is, three v - k curves 
will result generally in three different values of group velocity vg = 2~ dv/dk  
for a given value of k and thus require one mass to have three different 
particle velocities (v~ = %article at small values of  k), This is in violation of 
what has been termed (Fitzgerald, 1966b) the 'Supreme court '  condition of 
'one mass, one velocity' and hence leads to the conclusion that momentum 
transfer occurs from a lattice mass to only one other mass at a time. Only 
in this way can a single v -  k curve be assured for any direction in the 
lattice. Therefore the one-dimensional momentum transfer equations apply 
directly to three-dimensional lattices where the spacing, dj, between 
lattice masses in a particular direction, k, is used. In particular, for a lattice 
with spacings dl, d2, d3 in the x, y, z directions as shown in Fig. 5(b) we 
can write three independent momentum transfer equations, 

O(mu . . . . .  ) _  ih 
2 (Un+l . . . .  -~ Un-1 , r , s  - -  2u.  . . . .  ) - i2rrvv(mu. . . . .  ) 

Ot 2dl 

O(mv . . . . .  ) _ ih (V.,r+l,s + V.,r_l -- 2V . . . . .  ) -- i2~vv(mv . . . . .  ) (4.2) 
Ot 2d22 ,s 

O(mw . . . .  ~) ih 
Ot 2d32 (w . . . . .  +1 + w . . . . . .  1 - 2w . . . . .  ) - i2~rv.(mw . . . . .  ) 

It  also can be argued from this type of analysis that m o m e n t u m  transfer in 
any  part icular  direction in a lattice takes  place  only between masses  (a toms)  
aligned in that direction. Then transverse momentum transfer of  the type 
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indica ted  in Fig. 6 would  be ruled out. These restr ict ions on the type o f  
m o m e n t u m  transfer  that  can take  place between lat t ice masses are in 
agreement  with a macroscop ic  'col l i s ion '  process  for  m o m e n t u m  transfer.  
We  might ,  for  instance, a l low s imul taneous  mul t ip le  m o m e n t u m  transfer  
f rom a number  o f  masses to a single mass,  but  cer ta inly do not  expect  
s imul taneous  mo t ion  o f  the mass  in several different direct ions in o rder  to 
t ransfer  m o m e n t u m  f r o m  i tself  to o ther  masses! (Such mult ip le  t ransfer  
could  result  only f rom a break ing-up  or  fissioning of  the mass into smaller  
fragments .)  

The res t r ic t ion to ' cent ra l '  or  in-line m o m e n t u m  transfer  between lat t ice 
masses al lows the three-d imensional  Schroedinger  equat ion  to be easily 

YT 
1l, r+  1 

�9 �9 �9 
t 
I 

X 
I 

0 "-0 , 0  
n - l , r  n,r ~ n + l , r  

I 

x, 
I 

�9 O O x"  rt, r - 1  

Figure 6.--Representation of x - y  plane of a cubic lattice showing non-occurrence 
(dashed arrows) of transverse x-momentum transfer between masses such as n, r + 1 ; 
n, r; and n, r - 1. Instead, in-line or 'central' momentum transfer takes place from one 

atom to another as shown by solid arrows. 

appl ied  to ob ta in  results ident ical  to those in equa t ion  (4.2). The Schroedin-  
ger equa t ion  for  an  a t o m  of  mass,  m, at  a lat t ice site n, r, s in a three- 
d imens iona l  crystal  may  be wri t ten as, 

02 ~b . . . . .  02 ~ . . . . .  4 02 ~ . . . . .  2m 2ira 0~/, . . . . .  = 0 (4.3) 
q a ~  " az 2 ~ v .  .... 4; . . . . .  ~ h at 

I f  the m o m e n t u m  vector  P is now subst i tuted for  ~b the Schroedinger  
equa t ion  becomes 

02( P . . . . .  ) 02( P . . . . .  ) 02(Pn,r,s) 2m 2ira OP . . . . .  = 0 (4.4) 
Ox 2 .~- Oy z ~- OZ 2 h2 V, . . . .  P . . . . .  + h Ot 
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which results directly in three independent  scalar equations of  the same 
form for  the x, y, z components  of  m o m e n t u m ;  P~ = rnu, Py = my, P~ = row, 

02( m u  . . . . .  ) _~ 02( mu  . . . . .  ) _~ 02( rnu . . . . .  ) 

OX z Oy z OZ 2 

a2( my . . . . .  ) _~ 02( my . . . . .  ) 
ax 2 ay 2 

aZ(mw, r s) + , , 0 2 (  m w  . . . . . .  ) 

Ox ~ ay 2 

2m 2im O(rnu . . . . .  ) - 0 
hZ V. . . . .  (mu . . . . .  ) ~ h Ot 

O2(rnv . . . . .  ) 
+ 

Oz 2 

2m 2im O(mv . . . . .  ) = 0 
h2 Vn . . . .  (mu . . . . .  ) -~ h Ot 

02( m w  . . . . .  ) 

Oz 2 

2m 2im O(mw . . . . .  ) = 0 
h2 Vn . . . .  (toWn .. . .  ) ~ h Ot 

(4.5) 

Replacing the second derivative operators  by second difference quotients 
in the same manner  as previously done for  one-dimensional  lattices, we 
note that  for  the x -componen t  of  velocity, for  example,  these become 
[compare Fig. 4(b)]: 

2 f 
0 (mu . . . . .  )1 m 

OX2 ] . . . . . . . .  = ~1~2 (U.+l . . . .  + u . - i  . . . .  - 2u . . . . .  ) 

a~(mu . . . . .  )1 m 
ffvZvZY I~=r.,..s = d22 (u"'"+l 'S + u . , , - i  ,, - 2u . . . . .  ) 

02( m u  . . . . .  ) = m (u . . . . .  +1 + u. . . . .  -1 - 2u . . . . .  ) 

J . . . . . . . .  g3 ~ 

(4.6) 

Therefore  the expression for  the t ime rate of  change of  the x -componen t  of  
m o m e n t u m  at n, r, s becomes, according to equat ion (4,5), 

O(mu. r s) ih  . 
' = ~ ( u . + 1  .. . .  + u . - 1  ... .  - 2 u  . . . . .  ) 

ih 
+ ~ (u..r+l,s + u . . . .  1,~ - 2u..r,s) 

ih 
+ ~ ( u  ...... +1 + u  . . . . .  - l - 2 u  . . . . .  ) 

21r 
- i -  h-  V .  . . . .  (mu . . . . .  ) (4.7) 
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The first term on the right-hand side of  this equation represents the net 
transfer of  the x-component  of momentum from masses at n + 1, r, s and 
n - 1, r, s along the x axis to the lattice mass at the n, r, s. The second and 
third terms, however, represent a transverse net transfer of x-component 
momentum from masses at n, r + 1, s; n, r - 1, s and masses at n, r, s + 1 ; 
n, r, s - 1 along the y and z axes respectively. Such transverse or sideways 
momentum transfer is not possible according to our previous remarks 
(compare Fig. 6) and hence these terms must be zero. Entirely similar 
results are obtained for the y and z component  equations of  equation (4,5) 
so that these three component  equations become identical to those of  
equation (4.2) where V, .... = Vo and v~ = Vo/h as before. 

The same result can be obtained using the three-dimensional Schroedinger 
equation if we restrict our attention to plane momentum waves at the outset. 
However, the physical reasons leading to the final equations are quite 
different in the two cases. In the case originally discussed here we allow 
variations in Px = mu with y and z, but rule out transfer of this momentum 
in directions perpendicular to x; this results in OzPx/Oz2= OzPx/OyZ= O, 
according to the second difference quotient expressions for these derivatives 
and the resulting terms which appear in the momentum transfer equation 
as exemplified by equation (4.7). For plane waves we specify that Px is a 
function of x only and therefore constant in y and z directions; OzP~/Oy z 
and OzPx/Oz 2 can therefore be set equal to zero at the outset or their 
equivalent second difference quotients [equation (4.6)] set equal to zero 
since n o w  U n , r + l ,  s = U n , r _ l ,  s = H n , r ,  s etc. 

5. Conclusions 

Consideration of crystal lattices with point masses vibrating at a common 
frequency, Vv, about mean lattice sites requires the addition of a term, 
i2rrmvv(mv~), to the differential momentum transfer equation previously 
adduced for particle momentum waves in a lattice. The modified equation 
[equation (2.17)] also results (in both one and three dimensions) from 
application of the time-dependent Schroedinger equation to describe the 
behavior of  a general nth mass within the vicinity of  a lattice site. A particuar 
solution to this momentum transfer equation has been presented in which 
traveling particle momentum waves of frequency vp have their amplitudes 
modulated at a higher frequency, vv, to produce a type of drifting standing 
wave pattern as shown in Fig. 2. For convenience an 'Einstein' model of  
the crystal lattice was used in which the masses vibrate independently, but 
with a common frequency, v,, about their mean lattice positions. Such 
independent vibrations of each mass can be expected in general to have 
random phase relations even though they may have identical velocity 
amplitudes, B0. However, if we imagine that by some happy accident all 
of the independent vibrations of  the atoms in a particular crystal are in 
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phase (... 0,_1 = 0. = 0,+~ ... = 0) then it is possible to write a solution for 
the velocity, v,, of a general nth mass of the form 

v.( t )  = Bo exp [-i(2~rvv t + 0)] + BI exp {-i [2Tr(vp + vv) t + 0 - knd]} 

= (1 + B00BI exp [-i(27r% t - knd)]) B o e x p [ - i ( 2 ~ v ~ t  + 0)] (5.1) 

'modulating' wave 'carrier' wave 

Of course, this happy accident seems quite improbable, since it would 
correspond to an intrinsic oscillatory translation of an entire crystal sample. 
On the other hand, if we recall the mosaic structure of real crystals which 
are broken up into fragments of micron size, it could be imagined that such 
crystalline substructures vibrate randomly with respect to other sub- 
structures, but that the masses (atoms) of each substructure are in phase. 
Then equation (5.1) above could apply to the velocity of a general nth mass 
within a finite lattice segment with discrete values of the wave vector, k, 
required. 

Another alternative is to consider that the intrinsic vibrations of the 
lattice masses result from vibrational modes of the lattice as a whole 
(Debye or Born-von Karman models) instead of independent vibrations 
(Einstein model). Then a regular, periodic variation of the intrinsic vibration 
velocity will occur along a one-dimensional lattice for example, 

v,(vib.) = B0 exp [-i(2rrv~ t - k~ x)] (5.2) 

where v~ = es/A; cs is the velocity of sound in the lattice considered as a 
continuum (Debye model) 

or, v,(vib.) = B0 exp [-i(27rvv t - ko nd)] (5.3) 

where, for a one-dimensional lattice and nearest neighbor interactions only, 
v, = 1 /~r~ / (Ke /m)s inkJ /2 ;  Ke is an elastic interaction constant between 
adjacent lattice masses (Born-von Karman model). 

In these latter cases it is no longer possible to characterize the intrinsic 
lattice vibration by a single frequency, v~; rather a collection of vibrational 
modes of different frequencies is supposed to be present. The Debye model 
does lead to an accumulation of vibrational modes at the highest frequency, 
vv, however. Similarly, it is often found on the basis of the Born-yon 
Karman model that a high preponderance or accumulation of modes about 
one very high frequency does occur (Fitzgerald, 1966b). Thus the use of a 
single frequency, vv, to characterize the vibrational modes of a lattice 
remains a fairly good approximation in many cases. 

A study of additional solutions of the type given by equation (5.1) 
promises to provide the basis for a more detailed description of the propaga- 
tion of particle momentum waves produced by the application of a uni- 
directional force or load on a crystal, and the interaction of such waves with 
the intrinsic vibrational modes of the crystal leading to a release of lattice 
binding energy (Fitzgerald, 1966b; Fitzgerald & Wright, 1967). 
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